UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

COMPLEMENTARY PROBLEMS OF PHYSICAL CHEMISTRY

2018-19

LESSON 6

33. When 1 g iodine is dissolved in 285 g of ethyl ether, the boiling point increases in 0.032°C. What number of atoms has the iodine molecule in solution?

Data: $M_I = 127 \text{ u.m.a}; T_b^O = 307.8 \text{ K}; \Delta H_{vap} = 81.5 \text{ cal} \cdot \text{g}^{-1}$

Solution: Number of atoms of iodine molecule = 2

- **34.** 6 g of a mixture of naphthalene ($C_{10}H_8$) and anthracene ($C_{14}H_{10}$) are dissolved in 300 g of benzene. When the solution is cooled, it begins to freeze 0.7 °C below the freezing point of pure benzene: 5.5 °C. Determine the mixture composition, taking into account that he cryoscopic constant of benzene is 5.1 K·kg·mol⁻¹.
 - **Data:** $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $M_{\text{naphthalene}} = 128 \text{ g} \cdot \text{mol}^{-1}; M_{\text{anthracene}} = 178 \text{ g} \cdot \text{mol}^{-1}$

Solution: $w_{naphtalene} = 3.4 \text{ g}; w_{anthracene} = 2.6 \text{ g}$

35. The boiling point of chloroform (CHCl₃) is 61.7 °C. A solution of 0.402 g of naphthalene (C₁₀H₈) in 26.6 g of CHCl₃ increases its boiling point in 0.455 K. Calculate $\Delta \overline{H}_V$ of CHCl₃

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ (CHCl₃) M (CHCl₃) = 119.4 g·mol⁻¹; M(C₁₀H₈) = 128 g·mol⁻¹

Solution: $\Delta \overline{H}_{V} = 28856.65 \text{ J} \cdot \text{mol}^{-1}$

36. What numerical relationship exists between the relative lowering of the vapour pressure and the depression of freezing point depression of an ideal dilute aqueous solution of sucrose at T temperature?. What will be that relationship if the solute is benzoic acid and its degree of dissociation in the solution is 4%?

Data:
$$M_{sucrose} = 342.33 \text{ g} \cdot \text{mol}^{-1}$$
; $M_{benzoic} \text{ ac} = 122.1 \text{ g} \cdot \text{mol}^{-1}$;
 $M_{water} = 18 \text{ g} \cdot \text{mol}^{-1}$; $K_m = 1.86 \text{ K} \cdot \text{kg} \cdot \text{mol}^{-1}$;
 $R = 0.082 1 \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Solution: a) $\frac{\Delta P}{P_A^*} = 9.677 \cdot 10^{-3} \cdot \Delta T_F$; b) It would be equal

37. A commonly-used antifreeze in car radiators is ethylene glycol, $CH_2(OH)CH_2(OH)$. How many milliliters of this substance should be added to 6.5 1 of water if the temperature of the coldest winter day is -5 °C?

Data: Kc = 1.86 K·kg·mol-1; $M_{\text{ethylene}} = 62 \text{ g·mol}^{-1}$; $\rho_{\text{ethyleneglycol}} = 1.11 \text{ g·cm}^{-3}$

Solution: $V = 975.976 \text{ cm}^3$

38. The pure benzene freezes at 5.4 °C and a solution of 0.223 g of phenylacetic acid ($C_6H_5CH_2COOH$) in 4.4 g of benzene freezes at 4.47 °C. The melting heat of benzene is 9.89 kJ·mol⁻¹. Calculate the apparent molecular weight of phenylacetic acid and discuss the result.

Data: M (phenylacetic acid) = $136 \text{ g} \cdot \text{mol}^{-1}$; M (benzene) = $78 \text{ g} \cdot \text{mol}^{-1}$ R = $0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Solution: $M_{apparent}$ (phenylacetic acid) = 273.56 g· mol⁻¹

- **39.** Calculate for an aqueous solution with 0.300 mol·kg-1 of sucrose and a molarity of $C_{11}H_{22}O_{11}$ equal to 0.282 mol·dm⁻³, at 20 ° C and 1 atm:
 - a) Calculate the osmotic pressure of this solution using van't Hoff equation ...
 - **b**) Determine the activity and the activity coefficient of water in this solution, taking into account that the experimental osmotic pressure for this solution is 7.61 atm.
 - **Data:** ρ H₂O (20 ° C and 1 atm) = 0.998 g·cm⁻³; M_{water} = 18 g·mol⁻¹ R = 0.082 l·atm·K⁻¹·mol⁻¹ = 1.987 cal·K⁻¹·mol⁻¹ = 8.314 J·K⁻¹·mol⁻¹

Solution: $\pi = 6.775$ atm; **b**) a (H₂O) = 0.9943; γ (H₂O) = 0.99969

40. The freezing point depression of an aqueous 0.010 m solution of acetic acid is 0.0193 oC. Calculate the degree of dissociation at this concentration and the acidity constant of acetic acid.

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $\Delta \overline{H}_{m}(H_{2}O) = 5.98 \text{ kJ} \cdot \text{mol}^{-1}$

Solution: $\alpha = 0.03478$; Ka = $1.5232 \cdot 10^{-5}$

41. The freezing point depression of an aqueous 0.100m solution of acetic acid is 0,190°C at 1 atm. Determine the dissociation constant of acetic acid at this temperature

Dato: Kc (H₂O) = $1.86 \text{ K} \cdot \text{kg} \cdot \text{mol}^{-1}$

Solution: $Ka = 4.72 \cdot 10^{-5}$

42. Calculate the degree of dissociation of a substance of 180g·mol⁻¹ molecular weight, considering that it dissociates into two ions with equal charge and that the freezing point depression of 20 g dissolved in 100 cm³ of water is 2.5 °C.

Dato: Kc (H₂O) = $1.86 \text{ K} \cdot \text{kg} \cdot \text{mol}^{-1}$

Solution: $\alpha = 0.2096$